ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

Abstract

General Description The MAX1729 micropower step-up/step-down DC-DC converter is ideally suited for electrically controlled birefringence (ECB) and liquid-crystal-display (LCD) biassupply generation. It provides step-up/step-down voltage conversion and reduces output ripple by using a step-up DC-DC converter followed by a linear regulator. This architecture permits a physically smaller inductor than those used in competing SEPIC and flyback topologies. This device features low quiescent current ($67 \mu \mathrm{~A}$ typical). A logic-controlled shutdown mode further reduces quiescent current to $0.4 \mu \mathrm{~A}$ typical. The MAX1729 features an input that dynamically adjusts the output voltage to control display color or contrast. It offers two feedback modes: internal and external. Internal feedback mode allows output voltages between 2.5 V and 16 V , and is specifically designed to hold temperature drift to $\pm 11 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. External feedback mode allows the MAX1729 output voltage range to be tailored for various displays. An on-chip temperature sensor with a positive temperature coefficient provides compensation for LCD/ECB display temperature characteristics. In internal feedback mode, the buffered temperature sensor output is read and used to adjust the output voltage via a digital control signal. External feedback mode features an additional compensation method in which the temperature output is summed directly into the feedback network to provide first-order negative temperature compensation of the output voltage. The MAX1729 is available in the space-saving 10-pin $\mu \mathrm{MAX}$ package.

Applications

ECB Display Bias \& Color Adjustment
LCD Display Bias \& Contrast Adjustment
Cellular Phones
Personal Digital Assistants
Pin Configuration

Features

- High-Accuracy Reference Voltage ($\pm 1 \%$)
- $\pm 11 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Output Voltage Drift
- On-Chip Temperature Sensor Output
- Accurate Voltage and Temperature Provide:

Consistent ECB Colors
Consistent LCD Gray-Scale Contrast

- +2.7V to +5.5V Input Voltage Range
- Output Voltage Range
+2.5 V to $\mathbf{+ 1 6 \mathrm { V }}$ in Internal Feedback Mode
Programmable in External Feedback Mode
- Dynamic Control of the Output Voltage
- 67 $\mu \mathrm{A}$ Supply Current
- $0.4 \mu \mathrm{~A}$ Shutdown Current
- 10-Pin μ MAX Package (1.09mm max height)
- Evaluation Kit Available (MAX1729EVKIT)

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1729EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$

Typical Operating Circuit

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

ABSOLUTE MAXIMUM RATINGS

IN to GND \qquad
\qquad -0.3 V to +6 V
LX, PS, OUT to GND...3V to +20 V
CTLIN, FB, REF, COMP, TC to GND
-0.3 V to $\left(\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$
LX to PS
-20 V to +1.0 V
LX, PS, OUT Current
........... 60 mA

Continuous Power Dissipation ($\mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
10-pin $\mu \mathrm{MAX}$ (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .444 mW

Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature \qquad $+150^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) \qquad $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=+3 \mathrm{~V}, \mathrm{CTLIN}=I N, F B=G N D, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Voltage Range	VIN			2.7		5.5	V
Undervoltage Lockout Threshold (Note 2)	VLO			2.0		2.6	V
IN Supply Current	IIN				37	50	$\mu \mathrm{A}$
PS Supply Current	IPS				30	40	$\mu \mathrm{A}$
Shutdown Supply Current	ISHDN	CTLIN = GND, ISHDN	IIN + IPS		0.4	2	$\mu \mathrm{A}$
		IREF $=0$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.215	1.228	1.241	
	REF	$\mathrm{I}_{\text {REF }}=0$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.200		1.256	
		$\mathrm{FB}=\mathrm{GND}, \mathrm{CTLIN}=$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.35	2.45	2.5	
Minimum Output Voltage	(MIN)	IOUT $=0$ to 0.5 mA	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.35		2.52	
Maximum Output Voltage	Vout (MAX)	IOUT $=0$ to 0.5 mA		16	16.40		V
		FB = GND, CTLIN =	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13.90	13.95	14.00	
L		cycle, IOUT $=0$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13.60		14.20	100\%
Output Voltage	TCout	$V_{P S}=+18 \mathrm{~V}$ (Note 3)	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 11	± 30	ppm $/{ }^{\circ} \mathrm{C}$
Temperature Coefficient	TCout	$V_{P S}=+10 V^{\text {(Note } 3)}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 18	± 65	
Maximum Output Current	Iout			0.5	2.5		mA
TC Output Voltage	VTC	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.178	1.228	1.278	V
TC Output Temperature		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		15.5	16.5	17.5	
Coefficient (Note 3)	TCTC	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		14.5	16.5	18.5	V
TC Output Current	ITC			± 50			$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.215	1.228	1.241	
Feedback Set Voltage (FB)	$V_{\text {FB }}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		1.200		1.256	V
FB Mode Threshold	$\mathrm{V}_{\text {MODE }}$			90	122	150	mV
FB Bias Current	IfB	$\mathrm{V}_{\mathrm{FB}}=+1.25 \mathrm{~V}$			5	50	nA
		$\mathrm{VIN}=+5.5 \mathrm{~V}$		2			
CTLIN High Voltage	VIH	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$		1.3			V

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=+3 \mathrm{~V}, \mathrm{CTLIN}=\mathrm{IN}, F B=G N D, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.
Note 2: When V_{IN} is below this level, the boost and LDO outputs are disabled.
Note 3: Guaranteed by design.
Note 4: Minimum time to hold CTLIN low to invoke shutdown. If CTLIN is held low for less than toff, device does not enter shutdown.
Note 5: Switching regulator regulates this voltage to keep LDO from dropping out.

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

(Circuit of Figure 2, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAXIMUM OUTPUT CURRENT vs.
SUPPLY VOLTAGE

OUTPUT VOLTAGE vs.
DUTY CYCLE

EFFICIENCY vs. OUTPUT CURRENT
$V_{\text {OUT }}=16.4$ (CTLIN $\left.=\operatorname{IN}\right)$

PS TO OUT (LDO)
POWER-SUPPLY REJECTION RATIO

START-UP DELAY FROM SHUTDOWN

NO-LOAD SUPPLY CURRENT vs. SUPPLY VOLTAGE

SHUTDOWN SUPPLY CURRENT

DELAY TO SHUTDOWN

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

Typical Operating Characteristics (continued) (Circuit of Figure 2, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

PIN	NAME	FUNCTION
1	IN	Supply Input. Bypass with 0.1 μ F capacitor to ground. Connect to supply side of inductor (L1).
2	TC	Temperature-Sensor Output. Bypass to GND with a 1000pF capacitor.
3	REF	Reference Voltage Output. Bypass to GND with a 0.1 μ F capacitor.
4	COMP	Compensation Pin. In internal feedback mode (Figure 2), bypass with a 1 $\mu \mathrm{F}$ capacitor. In external feedback mode, COMP is a buffered inverse version of CTLIN (Figure 3).
5	FB	Feedback and Mode Control Input. Connect to GND for internal feedback mode operation.
6	CTLIN	Control Input. Drive low for more than 1.2ms to put the device into shutdown.
7	OUT	Bypass to GND with a 1.0 μ F capacitor.
8	PS	Output of boost converter and input to LDO. Bypass to GND with a 0.068 $\mu \mathrm{F}$ capacitor.
9	LX	Drain of the internal MOSFET Switch
10	GND	Ground

Detailed Description

The MAX1729 is designed to provide bias voltage for ECB or LCD displays. It is composed of a step-up DC-DC converter followed by a linear regulator (Figure 1), a combination that provides step-up/stepdown voltage conversion while minimizing output ripple. The device allows you to adjust a display's color or contrast by dynamically adjusting the MAX1729's output voltage using a PWM control signal. In internal feedback mode, the output voltage is adjustable between +2.5 V and +16 V . In external feedback mode, the output voltage is adjustable, and its range is set by a resistor network that is programmed to match the output voltage range of LCD/ECB displays needing a maximum output up to +18 V .

Boost Converter

The MAX1729's DC-DC boost converter is implemented with an on-chip N-channel MOSFET, a diode, and an error comparator. The IC's unique PFM control system varies the on-time and off-time of the switch based on the
boost converter's input and output voltage values, as follows:

$$
\begin{aligned}
& t_{\mathrm{ON}}=\frac{\mathrm{K}}{\mathrm{~V}_{\mathrm{IN}}} \\
& \mathrm{t}_{\mathrm{OFF}} \geq \frac{\mathrm{K}}{\mathrm{~V}_{\mathrm{PS}}-\mathrm{V}_{\mathrm{IN}}}
\end{aligned}
$$

where K is typically $8 \mathrm{~V}-\mu \mathrm{s}$. This timing maintains discontinuous conduction and sets the peak inductor current (IPEAK) to:

$$
I_{\text {PEAK }}=\frac{K}{L}
$$

where L is the inductance of L 1 (Figures 2, 3, and 4). When the error comparator detects that the drop across the linear regulator (VPS - VOUT) is less than approximately 0.6 V , the internal switch is turned on (toN initiates) and current through the inductor ramps to IPEAK. At the end of toN, the switch is turned off for at least toFF, allowing the

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

Figure 1. Internal Block Diagram
inductor current to ramp down and VPS to increase. If, at the end of tOFF, VPS - VOUT is still too low, then another tON is initiated immediately. Otherwise, the boost converter remains idle in a low-quiescent-current state until VPS - VOUT drops again and the error comparator initiates another cycle.

Linear Regulator

The PNP low-dropout linear regulator of the MAX1729 regulates the boost-converter output to the desired output voltage. The boost converter's regulation circuitry holds the linear regulator's input voltage (VPS) approximately 0.6 V above the output voltage to keep the regulator out of dropout, thereby enhancing ripple rejection. The linear regulator incorporates short-circuit protection, which limits the output current to approximately 6 mA .

Temperature Sensor Output The MAX1729 generates a temperature sensor voltage (VTC) that varies at $16.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (typ) and is nominally
equal to the reference voltage at room temperature. TC is capable of sinking or sourcing $50 \mu \mathrm{~A}$. This output is used to compensate for ECB color or LCD contrast variations caused by changes in temperature. It may be read with an ADC and used to modify an external PWM control signal or, in external feedback mode, summed directly into the feedback-resistor network.

Control Signal

An externally generated PWM control signal on CTLIN controls Vout in internal feedback mode and influences Vout in external feedback mode. In either mode, if CTLIN is held low for longer than 1.24 ms , the MAX1729 enters shutdown mode, decreasing the supply current below $2 \mu \mathrm{~A}$. Shutdown mode limits the minimum duty cycle and frequency that may be used to keep the device active. CTLIN frequencies between 2 kHz and 12 kHz are recommended.

Internal Feedback Mode

In internal feedback mode, the signal at CTLIN is inversely buffered, level-shifted, and output at COMP through a resistor. Internal resistance ($33 \mathrm{k} \Omega$ typical) and C 6 then filter the signal before it is used by the internal feedback network to set VOUT. If temperature compensation is used, the temperature sensor output voltage is read by an ADC and used to adjust the duty cycle of the PWM control signal. See the Designing for Internal Feedback Mode section for more information.

External Feedback Mode

In external feedback mode, the output voltage of the MAX1729 is controlled by the duty cycle of the PWM control signal and an external resistor network, as shown in Figure 3. In this mode, the signal at CTLIN is inverted, level-shifted, and presented directly to COMP. R3, R4, and C6 filter the signal, before it is summed into the feedback node.

Design Procedure

Designing for Internal Feedback Mode

For a 3 kHz PWM control signal use a $1 \mu \mathrm{~F}$ low-leakage ceramic capacitor for C6. For applications requiring a higher-frequency PWM control signal, reduce the value of C 6 to between $1 \mu \mathrm{~F}$ and $0.22 \mu \mathrm{~F}$ for frequencies between 3 kHz and 12 kHz . Higher C6 values reduce output ripple. In Figure 2, VOut is governed by the following equation:

$$
V_{\text {OUT }}=V_{\text {OUT(MIN })}+\text { Duty Cycle } \cdot \text { Gain }
$$

where VOUT(MIN) is 2.45 V and Gain is nominally $13.95 \mathrm{~V} / 100 \%$, as listed in the Electrical Characteristics.

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

To use a DC control signal to adjust the output voltage, use the circuit shown in Figure 4. In this configuration, VOUT is governed by the following equation:

$$
\mathrm{V}_{\text {OUT }} \approx 24.67 \mathrm{~V}_{\mathrm{FB}}-22.71 \mathrm{~V}_{\mathrm{COMP}}
$$

The impedance looking into COMP is nominally $33 \mathrm{k} \Omega$. A source output impedance of less than 500Ω is recommended. Also, ensure Vout $\leq 18 \mathrm{~V}$ by keeping Vcomp above 0.6V.

Designing for External Feedback Mode

To solve for VOUT in external feedback mode, assume the current into the FB pin is zero and the voltage at FB is 1.228 V . Then take the sum of the currents into FB and solve for VOUT:

$$
\begin{aligned}
& V_{\text {OUT }}=R 1\left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3+R 4}+\frac{1}{R 5}\right) V_{F B} \\
& -\left(\frac{R 1}{R 3+R 4}\right) V_{C O M P}-\left(\frac{R 1}{R 5}\right) V_{T C}
\end{aligned}
$$

Using the following formulas, calculate the external component values required for MAX1729 operation in external feedback mode, as shown in Figure 3. An example follows the formulas.

Figure 2. Internal Feedback Mode

External Component Value Formulas

1) Given the maximum output voltage needed ($\mathrm{V}_{\mathrm{MAX}}$), choose the maximum feedback current and solve for R1 $(10 \mu \mathrm{~A}$ to $30 \mu \mathrm{~A}$ is recommended for maximum feedback current) as follows:

Figure 3. External Feedback Mode

Figure 4. Using a DC Control Signal

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

2) Given the maximum output voltage ($\mathrm{V}_{\mathrm{MAX}}$) and minimum output voltage ($\mathrm{V}_{\mathrm{MIN}}$), calculate values for R3 and R4 as follows:

$$
\begin{aligned}
& \mathrm{R} 3=1 / 2\left(\frac{\mathrm{R} 1}{\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}}\right) \mathrm{V}_{\mathrm{FB}} \\
& \mathrm{R} 4=\mathrm{R} 3
\end{aligned}
$$

3) For first-order temperature compensation, calculate R5 as shown below. (If temperature compensation is not used, leave R5 open.)

$$
\mathrm{R} 5=\left(\frac{\mathrm{R} 1}{\text { Tempco }}\right) 16.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}
$$

where Tempco is the negative temperature coefficient needed to compensate the ECB or LCD display for changes in temperature.
4) Solve for Vcomp. The duty cycle used here corresponds to the duty cycle that yields the maximum output voltage, not including first-order temperature compensation.

$$
\mathrm{V}_{\mathrm{COMP}}=\mathrm{V}_{\mathrm{FB}}\left[1-\left(\text { Duty Cycle } \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4}\right)\right]
$$

where a 90% duty cycle corresponds to Duty Cycle $=0.9$. 5) Use the results from the above calculations to solve for R2. (For applications not utilizing temperature compensation, use $1 / R 5=0$.)

$$
\begin{aligned}
& \frac{1}{R 2}=\frac{1}{V_{F B}}\left(\frac{V_{\mathrm{OUT}}}{R 1}+\frac{V_{\mathrm{COMP}}}{R 3}+\frac{V_{\mathrm{FB}}}{\mathrm{R} 5}\right) \\
& -\left(\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 3}+\frac{1}{\mathrm{R} 5}\right)
\end{aligned}
$$

External Component Value Example

The example application requires the output voltage to adjust between 5 V and 10 V , using the circuit shown in Figure 3. The device in our example needs a temperature coefficient of $33 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, which yields the following results.

1) $\mathrm{V}_{\mathrm{MAX}}=10 \mathrm{~V}$ and $I_{F B}=29.24 \mu \mathrm{~A}$ is within the limits and yields a reasonable resistor value, therefore:

$$
\mathrm{R} 1=\frac{10 \mathrm{~V}-1.228 \mathrm{~V}}{29.24 \mu \mathrm{~A}}=300 \mathrm{k} \Omega
$$

2) $\mathrm{V}_{\mathrm{MAX}}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{MIN}}=5 \mathrm{~V}$, therefore:

$$
\mathrm{R} 3=1 / 2\left(\frac{300 \mathrm{k} \Omega}{5 \mathrm{~V}}\right) 1.228=36,840 \Omega
$$

with $\mathrm{R} 3=36.7 \mathrm{k} \Omega$, then $\mathrm{V}_{\mathrm{MIN}}=5.019 \mathrm{~V}$. Let $\mathrm{R} 4=$ $R 3=36.7 \mathrm{k} \Omega$.
3) $\mathrm{Tempco}=33 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, therefore:

$$
\mathrm{R} 5=\left(\frac{300 \mathrm{k} \Omega}{33 \mathrm{mV} /{ }^{\circ} \mathrm{C}}\right) 16.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}=150 \mathrm{k} \Omega
$$

4) If external circuitry limits the duty cycle to 90%, the following equation is true:

$$
\mathrm{V}_{\mathrm{COMP}}=1.228\left(1-\frac{0.9}{2}\right)=0.6754 \mathrm{~V}
$$

5) Solving for R2:

$$
\begin{aligned}
& \frac{1}{\mathrm{R} 2}=\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{R} 1}+\frac{\mathrm{V}_{\mathrm{COMP}}}{\mathrm{R} 3}+\frac{\mathrm{V}_{\mathrm{FB}}}{\mathrm{R} 5}\right) \frac{1}{\mathrm{~V}_{\mathrm{FB}}} \\
& -\left(\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 3}+\frac{1}{\mathrm{R} 5}\right)=\frac{1}{56560}
\end{aligned}
$$

With R2 $=56 \mathrm{k} \Omega$, a duty cycle of 87.4% generates a Vout of 10 V .

Component Selection

Inductors
Use a $220 \mu \mathrm{H}$ inductor to maximize output current (2.5 mA typical). Use an inductor with DC resistance less than 10Ω and a saturation current exceeding 35 mA . For lower peak inductor current, use a $470 \mu \mathrm{H}$ inductor with DC resistance less than 20Ω and a saturation current over 18 mA . This limits output current to typically less than 1 mA . See Table 1 for a list of recommended inductors. The inductor should be connected from the battery to the LX pin, as close to the IC as possible.

Capacitors
The equivalent series resistance (ESR) of output capacitor C2 directly affects output ripple. To minimize output ripple, use a low-ESR capacitor. A physically smaller capacitor, such as a common ceramic capacitor, minimizes board space and cost while creating an output ripple that's acceptable in most applications. Refer to Table 2 for recommended capacitor values.

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

Table 1. Recommended Inductors

SUPPLIER	PART	INDUCTANCE $(\boldsymbol{\mu} \mathbf{H})$	DC RESISTANCE (Ω)	SATURATION CURRENT $(\mathbf{m A})$	MAX HEIGHT $(\mathbf{m m})$
Murata	LQH3C221K04M00	220	8.4	70	2.2
Panasonic	ELT3KN115B	470	19	40	1.6

Table 2. Recommended Capacitor Values

CAPACITOR	CAPACITANCE $(\boldsymbol{\mu F})$
C 1	0.1
C 2	0.068
C 3	0.1
C 4	1
C 5	1000 pF
C^{\star}	1

*Use a low-leakage capacitor.

Applications Information

PC Board Layout Considerations

Proper PC board layout minimizes output ripple and increases efficiency. For best results, use a ground plane, minimize the space between $\mathrm{C} 1, \mathrm{C} 2$, and GND of the MAX1729, and place the inductor as close to LX and IN as possible. For an example of proper PC board layout, refer to the MAX1729 Evaluation Kit.

Chip Information

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

TIP VEW

	INCHES		Millimeters	
DIM	MIN	MAX	MIN	MAX
A	0.037	0.043	0.939	1.092
A1	0.002	0.006	0.051	0.152
A2	0.030	0.038	0.762	0.965
D1	0.112	0.124	2.845	3.150
D2	0.110	0.122	2.794	3.099
E1	0.112	0.124	2.845	3.150
E2	0.110	0.122	2.794	3.099
E	0.185	0.201	4.699	5.105
L	0.0155	0.0275	0.394	0.699
L1	0.037 REF		0.940 RE「	
b	0.007	0.0106	0.177	0.270
e	0.0197 BSC		500 BSC	
c	0.0035	0.0078	0.090	0.200
S	0.0196 REF		498 REF	
α	0°	6°	0°	6°

NDTES:

1. D\&E DD NDT INCLUDE MZLD FLASH
2. MILD FLASH OR PRDTRUSIDNS NDT TD EXCEED . 15 mm (.006").
3. CONTRZLLING DIMENSIIN: INCHES

FRONT MEW cunen complo ni 21-0061

| REV | $1 / 1$ |
| :---: | :---: | :---: |

ECB and LCD Display Bias Supply with Accurate Output Voltage and Temperature Compensation

